GateMeClass: Gate Mining and Classification of cytometry data

Author:

Caligola Simone1ORCID,Giacobazzi Luca2,Canè Stefania1,Vella Antonio3,Adamo Annalisa2,Ugel Stefano2,Giugno Rosalba4ORCID,Bronte Vincenzo1

Affiliation:

1. Veneto Institute of Oncology IOV-IRCCS , Padova, Italy

2. Section of Immunology, Department of Medicine, University of Verona , Verona, Italy

3. Section of Immunology, Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona, Italy

4. Department of Computer Science, University of Verona , Verona, Italy

Abstract

Abstract Motivation Cytometry comprises powerful techniques for analyzing the cell heterogeneity of a biological sample by examining the expression of protein markers. These technologies impact especially the field of oncoimmunology, where cell identification is essential to analyze the tumor microenvironment. Several classification tools have been developed for the annotation of cytometry datasets, which include supervised tools that require a training set as a reference (i.e. reference-based) and semisupervised tools based on the manual definition of a marker table. The latter is closer to the traditional annotation of cytometry data based on manual gating. However, they require the manual definition of a marker table that cannot be extracted automatically in a reference-based fashion. Therefore, we are lacking methods that allow both classification approaches while maintaining the high biological interpretability given by the marker table. Results We present a new tool called GateMeClass (Gate Mining and Classification) which overcomes the limitation of the current methods of classification of cytometry data allowing both semisupervised and supervised annotation based on a marker table that can be defined manually or extracted from an external annotated dataset. We measured the accuracy of GateMeClass for annotating three well-established benchmark mass cytometry datasets and one flow cytometry dataset. The performance of GateMeClass is comparable to reference-based methods and marker table-based techniques, offering greater flexibility and rapid execution times. Availability and implementation GateMeClass is implemented in R language and is publicly available at https://github.com/simo1c/GateMeClass

Funder

Associazione Italiana per la Ricerca sul Cancro

NHS

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3