multiclassPairs: an R package to train multiclass pair-based classifier

Author:

Marzouka Nour-Al-Dain1ORCID,Eriksson Pontus1

Affiliation:

1. Department of Clinical Sciences, Division of Oncology, Lund University, 22381 Lund, Sweden

Abstract

Abstract Motivation k–Top Scoring Pairs (kTSP) algorithms utilize in-sample gene expression feature pair rules for class prediction, and have demonstrated excellent performance and robustness. The available packages and tools primarily focus on binary prediction (i.e. two classes). However, many real-world classification problems e.g. tumor subtype prediction, are multiclass tasks. Results Here, we present multiclassPairs, an R package to train pair-based single sample classifiers for multiclass problems. multiclassPairs offers two main methods to build multiclass prediction models, either using a one-versus-rest kTSP scheme or through a novel pair-based Random Forest approach. The package also provides options for dealing with class imbalances, multiplatform training, missing features in test data and visualization of training and test results. Availability and implementation ‘multiclassPairs’ package is available on CRAN servers and GitHub: https://github.com/NourMarzouka/multiclassPairs. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

The Swedish Research Council

The Swedish Cancer Society

Mrs. Berta Kamprad’s Cancer Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference13 articles.

1. Rank discriminants for predicting phenotypes from RNA expression;Afsari;Ann. Appl. Stat,2014

2. switchBox: an R package for k-Top Scoring Pairs classifier development;Afsari;Bioinf. Oxf. Engl,2015

3. Clinical value of RNA sequencing-based classifiers for prediction of the five conventional breast cancer biomarkers: a report from the population-based multicenter Sweden Cancerome Analysis Network-Breast Initiative;Brueffer;JCO Precis. Oncol,2018

4. Performance of gene expression-based single sample predictors for assessment of clinicopathological subgroups and molecular subtypes in cancers: a case comparison study in non-small cell lung cancer;Cirenajwis;Brief. Bioinf,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3