Entrezpy: a Python library to dynamically interact with the NCBI Entrez databases

Author:

Buchmann Jan P1ORCID,Holmes Edward C1

Affiliation:

1. Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

Abstract Summary Entrezpy is a Python library that automates the querying and downloading of data from the Entrez databases at National Center for Biotechnology Information by interacting with E-Utilities. Entrezpy implements complex queries by automatically creating E-Utility parameters from the results obtained that can then be used directly in subsequent queries. Entrezpy also allows the user to cache and retrieve results locally, implements interactions with all Entrez databases as part of an analysis pipeline and adjusts parameters within an ongoing query or using prior results. Entrezpy’s modular design enables it to easily extend and adjust existing E-Utility functions. Availability and implementation Entrezpy is implemented in Python 3 (≥3.6) and depends only on the Python Standard Library. It is available via PyPi (https://pypi.org/project/entrezpy/) and at https://gitlab.com/ncbipy/entrezpy.git. Entrezpy is licensed under the LGPLv3 and also at http://entrezpy.readthedocs.io/.

Funder

ARC Australian Laureate Fellowship

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference4 articles.

1. Biopython: freely available Python tools for computational molecular biology and bioinformatics;Cock;Bioinformatics,2009

2. ETE 3: reconstruction, analysis, and visualization of phylogenomic data;Huerta-Cepas;Mol. Biol. Evol,2016

3. Database resources of the National Center for Biotechnology Information;Nucleic Acids Res,2016

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3