NerLTR-DTA: drug–target binding affinity prediction based on neighbor relationship and learning to rank

Author:

Ru Xiaoqing12ORCID,Ye Xiucai1,Sakurai Tetsuya1,Zou Quan32ORCID

Affiliation:

1. Department of Computer Science, University of Tsukuba , Tsukuba 3058577, Japan

2. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China

3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Abstract Motivation Drug–target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug–target interactions. Predicting drug–target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order. Results In this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug–target associations and can contribute to new drug discovery and drug repurposing. Availability and implementation The proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.

Funder

National Natural Science Foundation of China

Sichuan Provincial Science Fund for Distinguished Young Scholars

Special Science Foundation of Quzhou

New Energy and Industrial Technology Development Organization 265

JST COI-NEXT

JST SPRING

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3