Affiliation:
1. Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University , New Brunswick, NJ 08901, United States
Abstract
Abstract
Motivation
Cell-type annotation is a time-consuming yet critical first step in the analysis of single-cell RNA-seq data, especially when multiple similar cell subtypes with overlapping marker genes are present. Existing automated annotation methods have a number of limitations, including requiring large reference datasets, high computation time, shallow annotation resolution, and difficulty in identifying cancer cells or their most likely cell of origin.
Results
We developed Census, a biologically intuitive and fully automated cell-type identification method for single-cell RNA-seq data that can deeply annotate normal cells in mammalian tissues and identify malignant cells and their likely cell of origin. Motivated by the inherently stratified developmental programs of cellular differentiation, Census infers hierarchical cell-type relationships and uses gradient-boosted \decision trees that capitalize on nodal cell-type relationships to achieve high prediction speed and accuracy. When benchmarked on 44 atlas-scale normal and cancer, human and mouse tissues, Census significantly outperforms state-of-the-art methods across multiple metrics and naturally predicts the cell-of-origin of different cancers. Census is pretrained on the Tabula Sapiens to classify 175 cell-types from 24 organs; however, users can seamlessly train their own models for customized applications.
Availability and implementation
Census is available at Zenodo https://zenodo.org/records/7017103 and on our Github https://github.com/sjdlabgroup/Census.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability