Hierarchical and automated cell-type annotation and inference of cancer cell of origin with Census

Author:

Ghaddar Bassel1ORCID,De Subhajyoti1

Affiliation:

1. Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University , New Brunswick, NJ 08901, United States

Abstract

Abstract Motivation Cell-type annotation is a time-consuming yet critical first step in the analysis of single-cell RNA-seq data, especially when multiple similar cell subtypes with overlapping marker genes are present. Existing automated annotation methods have a number of limitations, including requiring large reference datasets, high computation time, shallow annotation resolution, and difficulty in identifying cancer cells or their most likely cell of origin. Results We developed Census, a biologically intuitive and fully automated cell-type identification method for single-cell RNA-seq data that can deeply annotate normal cells in mammalian tissues and identify malignant cells and their likely cell of origin. Motivated by the inherently stratified developmental programs of cellular differentiation, Census infers hierarchical cell-type relationships and uses gradient-boosted \decision trees that capitalize on nodal cell-type relationships to achieve high prediction speed and accuracy. When benchmarked on 44 atlas-scale normal and cancer, human and mouse tissues, Census significantly outperforms state-of-the-art methods across multiple metrics and naturally predicts the cell-of-origin of different cancers. Census is pretrained on the Tabula Sapiens to classify 175 cell-types from 24 organs; however, users can seamlessly train their own models for customized applications. Availability and implementation Census is available at Zenodo https://zenodo.org/records/7017103 and on our Github https://github.com/sjdlabgroup/Census.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3