EDCNN: identification of genome-wide RNA-binding proteins using evolutionary deep convolutional neural network

Author:

Wang Yawei1,Yang Yuning2ORCID,Ma Zhiqiang2,Wong Ka-Chun3ORCID,Li Xiangtao1ORCID

Affiliation:

1. School of Artificial Intelligence, Jilin University, Changchun, Jilin, China

2. School of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China

3. Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR

Abstract

Abstract Motivation RNA-binding proteins (RBPs) are a group of proteins associated with RNA regulation and metabolism, and play an essential role in mediating the maturation, transport, localization and translation of RNA. Recently, Genome-wide RNA-binding event detection methods have been developed to predict RBPs. Unfortunately, the existing computational methods usually suffer some limitations, such as high-dimensionality, data sparsity and low model performance. Results Deep convolution neural network has a useful advantage for solving high-dimensional and sparse data. To improve further the performance of deep convolution neural network, we propose evolutionary deep convolutional neural network (EDCNN) to identify protein–RNA interactions by synergizing evolutionary optimization with gradient descent to enhance deep conventional neural network. In particular, EDCNN combines evolutionary algorithms and different gradient descent models in a complementary algorithm, where the gradient descent and evolution steps can alternately optimize the RNA-binding event search. To validate the performance of EDCNN, an experiment is conducted on two large-scale CLIP-seq datasets, and results reveal that EDCNN provides superior performance to other state-of-the-art methods. Furthermore, time complexity analysis, parameter analysis and motif analysis are conducted to demonstrate the effectiveness of our proposed algorithm from several perspectives. Availability and implementation The EDCNN algorithm is available at GitHub: https://github.com/yaweiwang1232/EDCNN. Both the software and the supporting data can be downloaded from: https://figshare.com/articles/software/EDCNN/16803217. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Research Grants Council of the Hong Kong Special Administrative Region

Health and Medical Research Fund

Health Bureau

The Government of the Hong Kong Special Administrative Region

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3