A multilocus approach for accurate variant calling in low-copy repeats using whole-genome sequencing

Author:

Prodanov Timofey123ORCID,Bansal Vikas4ORCID

Affiliation:

1. Bioinformatics and Systems Biology Graduate Program, University of California San Diego , La Jolla, CA 92093, United States

2. Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University , Düsseldorf 40225, Germany

3. Center for Digital Medicine, Heinrich Heine University , Düsseldorf 40225, Germany

4. School of Medicine, University of California San Diego , La Jolla, CA 92093, United States

Abstract

Abstract Motivation Low-copy repeats (LCRs) or segmental duplications are long segments of duplicated DNA that cover > 5% of the human genome. Existing tools for variant calling using short reads exhibit low accuracy in LCRs due to ambiguity in read mapping and extensive copy number variation. Variants in more than 150 genes overlapping LCRs are associated with risk for human diseases. Methods We describe a short-read variant calling method, ParascopyVC, that performs variant calling jointly across all repeat copies and utilizes reads independent of mapping quality in LCRs. To identify candidate variants, ParascopyVC aggregates reads mapped to different repeat copies and performs polyploid variant calling. Subsequently, paralogous sequence variants that can differentiate repeat copies are identified using population data and used for estimating the genotype of variants for each repeat copy. Results On simulated whole-genome sequence data, ParascopyVC achieved higher precision (0.997) and recall (0.807) than three state-of-the-art variant callers (best precision = 0.956 for DeepVariant and best recall = 0.738 for GATK) in 167 LCR regions. Benchmarking of ParascopyVC using the genome-in-a-bottle high-confidence variant calls for HG002 genome showed that it achieved a very high precision of 0.991 and a high recall of 0.909 across LCR regions, significantly better than FreeBayes (precision = 0.954 and recall = 0.822), GATK (precision = 0.888 and recall = 0.873) and DeepVariant (precision = 0.983 and recall = 0.861). ParascopyVC demonstrated a consistently higher accuracy (mean F1 = 0.947) than other callers (best F1 = 0.908) across seven human genomes. Availability and implementation ParascopyVC is implemented in Python and is freely available at https://github.com/tprodanov/ParascopyVC.

Funder

National Human Genome Research Institute

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3