Affiliation:
1. ICTEAM/INGI/Artificial Intelligence and Algorithms Group, UCLouvain , Louvain-la-Neuve 1348, Belgium
Abstract
Abstract
Motivation
Identifying rare cell types is an important task to capture the heterogeneity of single-cell data, such as scRNA-seq. The widespread availability of such data enables to aggregate multiple samples, corresponding for example to different donors, into the same study. Yet, such aggregated data is often subject to batch effects between samples. Clustering it therefore generally requires the use of data integration methods, which can lead to overcorrection, making the identification of rare cells difficult. We present scCross, a biclustering method identifying rare subpopulations of cells present across multiple single-cell samples. It jointly identifies a group of cells with specific marker genes by relying on a global sum criterion, computed over entire subpopulation of cells, rather than pairwise comparisons between individual cells. This proves robust with respect to the high variability of scRNA-seq data, in particular batch effects.
Results
We show through several case studies that scCross is able to identify rare subpopulations across multiple samples without performing prior data integration. Namely, it identifies a cilium subpopulation with potential new ciliary genes from lung cancer cells, which is not detected by typical alternatives. It also highlights rare subpopulations in human pancreas samples sequenced with different protocols, despite visible shifts in expression levels between batches. We further show that scCross outperforms typical alternatives at identifying a target rare cell type in a controlled experiment with artificially created batch effects. This shows the ability of scCross to efficiently identify rare cell subpopulations characterized by specific genes despite the presence of batch effects.
Availability and implementation
The R and Scala implementation of scCross is freely available on GitHub, at https://github.com/agerniers/scCross/. A snapshot of the code and the data underlying this article are available on Zenodo, at https://zenodo.org/doi/10.5281/zenodo.10471063.
Publisher
Oxford University Press (OUP)