Palo: spatially aware color palette optimization for single-cell and spatial data

Author:

Hou Wenpin1,Ji Zhicheng2ORCID

Affiliation:

1. Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health , Baltimore, MD 21205, USA

2. Department of Biostatistics and Bioinformatics, Duke University School of Medicine , Durham, NC 27710, USA

Abstract

Abstract Summary In the exploratory data analysis of single-cell or spatial genomic data, single-cells or spatial spots are often visualized using a two-dimensional plot where cell clusters or spot clusters are marked with different colors. With tens of clusters, current visualization methods often assign visually similar colors to spatially neighboring clusters, making it hard to identify the distinction between clusters. To address this issue, we developed Palo that optimizes the color palette assignment for single-cell and spatial data in a spatially aware manner. Palo identifies pairs of clusters that are spatially neighboring to each other and assigns visually distinct colors to those neighboring pairs. We demonstrate that Palo leads to improved visualization in real single-cell and spatial genomic datasets. Availability and implementation Palo R package is freely available at Github (https://github.com/Winnie09/Palo) and Zenodo (https://doi.org/10.5281/zenodo.6562505). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference16 articles.

1. 10X Visium spatial transcriptomics data of mouse anterior brain,2020

2. A comparison of automatic cell identification methods for single-cell RNA sequencing data;Abdelaal;Genome Biol,2019

3. Dimensionality reduction for visualizing single-cell data using UMAP;Becht;Nat. Biotechnol,2019

4. dittoSeq: universal user-friendly single-cell and bulk RNA sequencing visualization toolkit;Bunis;Bioinformatics,2021

5. Transcriptional programs of neoantigen-specific til in anti-pd-1-treated lung cancers;Caushi;Nature,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3