IntelliPy: a GUI for analyzing IntelliCage data

Author:

Ruffini Nicolas12,Müller Marianne B23,Schmitt Ulrich2,Gerber Susanne1ORCID

Affiliation:

1. Institute for Human Genetics, University Medical Center Johannes Gutenberg University, 55131 Mainz, Germany

2. Leibniz Institute for Resilience Research, Leibniz Association, 55122 Mainz, Germany

3. Translational Psychiatry, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany

Abstract

Abstract Summary The IntelliCage systems offer the possibility to conduct long-term behavioral experiments on mice in social groups without human intervention. Although this setup provides new findings, only about 150 studies with the IntelliCage system have been published in the last two decades, which is also caused by the challenging problems of processing and handling the large and heterogeneous amounts of captured data. This application note introduces the Python-GUI IntelliPy, especially designed for users not very experienced in using programming languages. IntelliPy allows users to quickly analyze the IntelliCage output in a user-friendly way, thus making the systems more accessible to a broader audience. Availability and implementation https://github.com/NiRuff/IntelliPy. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Forschungsinitiative Rheinland-Pfalz

Leibniz Institute for Resilience Research: LIR Mainz

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference7 articles.

1. Animal models: can a mouse be standardized?;Bohannon;Science,2002

2. Animal models: to build a better mouse cage;Bohannon;Science,2002

3. PyMICE: APython library for analysis of IntelliCage data;Dzik;Behav. Res. Methods,2018

4. IntelliCage as a tool for measuring mouse behavior—20 years perspective;Kiryk,2020

5. Differential involvement of the central amygdala in appetitive versus aversive learning;Knapska;Learn. Mem,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3