Insights from incorporating quantum computing into drug design workflows

Author:

Lau Bayo1,Emani Prashant S23,Chapman Jackson23,Yao Lijing1,Lam Tarsus1,Merrill Paul1,Warrell Jonathan23,Gerstein Mark B2345,Lam Hugo Y K1ORCID

Affiliation:

1. HypaHealth, HypaHub Inc. , San Jose, CA 95128, USA

2. Program in Computational Biology and Bioinformatics, Yale University , New Haven, CT 06520, USA

3. Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT 06520, USA

4. Department of Computer Science, Yale University , New Haven, CT 06520, USA

5. Department of Statistics & Data Science, Yale University , New Haven, CT 06520, USA

Abstract

Abstract Motivation While many quantum computing (QC) methods promise theoretical advantages over classical counterparts, quantum hardware remains limited. Exploiting near-term QC in computer-aided drug design (CADD) thus requires judicious partitioning between classical and quantum calculations. Results We present HypaCADD, a hybrid classical-quantum workflow for finding ligands binding to proteins, while accounting for genetic mutations. We explicitly identify modules of our drug-design workflow currently amenable to replacement by QC: non-intuitively, we identify the mutation-impact predictor as the best candidate. HypaCADD thus combines classical docking and molecular dynamics with quantum machine learning (QML) to infer the impact of mutations. We present a case study with the coronavirus (SARS-CoV-2) protease and associated mutants. We map a classical machine-learning module onto QC, using a neural network constructed from qubit-rotation gates. We have implemented this in simulation and on two commercial quantum computers. We find that the QML models can perform on par with, if not better than, classical baselines. In summary, HypaCADD offers a successful strategy for leveraging QC for CADD. Availability and implementation Jupyter Notebooks with Python code are freely available for academic use on GitHub: https://www.github.com/hypahub/hypacadd_notebook. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference59 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study on improving drug–drug interactions prediction using convolutional neural networks;Applied Soft Computing;2024-11

2. A hybrid quantum computing pipeline for real world drug discovery;Scientific Reports;2024-07-23

3. A brief review on quantum computing based drug design;WIREs Data Mining and Knowledge Discovery;2024-07-16

4. Improved Quantum Algorithm: A Crucial Stepping Stone in Quantum-Powered Drug Discovery;Journal of Electronic Materials;2024-07-10

5. Quantum AI in Healthcare : Revolutionizing Diagnosis, Treatment and Drug Discovery;International Journal of Scientific Research in Science and Technology;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3