Deep structure integrative representation of multi-omics data for cancer subtyping

Author:

Yang Bo12ORCID,Yang Yan1,Su Xueping3

Affiliation:

1. School of Computer Science, Xi’an Polytechnic University , Xi’an, 710048, China

2. Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, ON M5S 3E1, Canada

3. School of Electronics and Information, Xi’an Polytechnic University , Xi’an 710048, China

Abstract

Abstract Motivation Cancer is a heterogeneous group of diseases. Cancer subtyping is a crucial and critical step to diagnosis, prognosis and treatment. Since high-throughput sequencing technologies provide an unprecedented opportunity to rapidly collect multi-omics data for the same individuals, an urgent need in current is how to effectively represent and integrate these multi-omics data to achieve clinically meaningful cancer subtyping. Results We propose a novel deep learning model, called Deep Structure Integrative Representation (DSIR), for cancer subtypes dentification by integrating representation and clustering multi-omics data. DSIR simultaneously captures the global structures in sparse subspace and local structures in manifold subspace from multi-omics data and constructs a consensus similarity matrix by utilizing deep neural networks. Extensive tests are performed in 12 different cancers on three levels of omics data from The Cancer Genome Atlas. The results demonstrate that DSIR obtains more significant performances than the state-of-the-art integrative methods. Availability and implementation https://github.com/Polytech-bioinf/Deep-structure-integrative-representation.git Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

NSFC

Xi’an Municipal Science and Technology Program

Doctoral Scientific Research Foundation of Xi’an Polytechnic University

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference47 articles.

1. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes;Bebber;Nat. Commun,2021

2. Insights into breast cancer phenotying through molecular omics approaches and therapy response;Belizario;Cancer Drug Resist,2019

3. Analysis of microarray data using Z score transformation;Cheadle;J. Mol. Diagn,2003

4. Multiview subspace clustering using low-rank representation;Chen;IEEE Trans. Cybern,2021

5. Molecular subtypes of pancreatic cancer;Collisson;Nat. Rev. Gastro. Hepat,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3