Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction

Author:

Bazgir Omid1,Ghosh Souparno2,Pal Ranadip1

Affiliation:

1. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA

2. Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

Abstract

Abstract Motivation Anti-cancer drug sensitivity prediction using deep learning models for individual cell line is a significant challenge in personalized medicine. Recently developed REFINED (REpresentation of Features as Images with NEighborhood Dependencies) CNN (Convolutional Neural Network)-based models have shown promising results in improving drug sensitivity prediction. The primary idea behind REFINED-CNN is representing high dimensional vectors as compact images with spatial correlations that can benefit from CNN architectures. However, the mapping from a high dimensional vector to a compact 2D image depends on the a priori choice of the distance metric and projection scheme with limited empirical procedures guiding these choices. Results In this article, we consider an ensemble of REFINED-CNN built under different choices of distance metrics and/or projection schemes that can improve upon a single projection based REFINED-CNN model. Results, illustrated using NCI60 and NCI-ALMANAC databases, demonstrate that the ensemble approaches can provide significant improvement in prediction performance as compared to individual models. We also develop the theoretical framework for combining different distance metrics to arrive at a single 2D mapping. Results demonstrated that distance-averaged REFINED-CNN produced comparable performance as obtained from stacking REFINED-CNN ensemble but with significantly lower computational cost. Availability and implementation The source code, scripts, and data used in the paper have been deposited in GitHub (https://github.com/omidbazgirTTU/IntegratedREFINED). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institute Of General Medical Sciences

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3