TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction

Author:

Sharma Divya1,Paterson Andrew D12,Xu Wei13

Affiliation:

1. Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada M5T 3M7

2. Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8

3. Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada, M5G 2C1

Abstract

Abstract Motivation Research supports the potential use of microbiome as a predictor of some diseases. Motivated by the findings that microbiome data is complex in nature, and there is an inherent correlation due to hierarchical taxonomy of microbial Operational Taxonomic Units (OTUs), we propose a novel machine learning method incorporating a stratified approach to group OTUs into phylum clusters. Convolutional Neural Networks (CNNs) were used to train within each of the clusters individually. Further, through an ensemble learning approach, features obtained from each cluster were then concatenated to improve prediction accuracy. Our two-step approach comprising stratification prior to combining multiple CNNs, aided in capturing the relationships between OTUs sharing a phylum efficiently, as compared to using a single CNN ignoring OTU correlations. Results We used simulated datasets containing 168 OTUs in 200 cases and 200 controls for model testing. Thirty-two OTUs, potentially associated with risk of disease were randomly selected and interactions between three OTUs were used to introduce non-linearity. We also implemented this novel method in two human microbiome studies: (i) Cirrhosis with 118 cases, 114 controls; (ii) type 2 diabetes (T2D) with 170 cases, 174 controls; to demonstrate the model’s effectiveness. Extensive experimentation and comparison against conventional machine learning techniques yielded encouraging results. We obtained mean AUC values of 0.88, 0.92, 0.75, showing a consistent increment (5%, 3%, 7%) in simulations, Cirrhosis and T2D data, respectively, against the next best performing method, Random Forest. Availability and implementation https://github.com/divya031090/TaxoNN_OTU. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Natural Sciences and Engineering Research Council of Canada

Crohn’s and Colitis Canada

CCC-GEMIII

Helmsley Charitable Trust

NSERC

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3