Potent antibiotic design via guided search from antibacterial activity evaluations

Author:

Chen Lu1,Yu Liang1ORCID,Gao Lin1ORCID

Affiliation:

1. School of Computer Science and Technology, Xidian University , Xi’an 710071, Shaanxi, China

Abstract

Abstract Motivation The emergence of drug-resistant bacteria makes the discovery of new antibiotics an urgent issue, but finding new molecules with the desired antibacterial activity is an extremely difficult task. To address this challenge, we established a framework, MDAGS (Molecular Design via Attribute-Guided Search), to optimize and generate potent antibiotic molecules. Results By designing the antibacterial activity latent space and guiding the optimization of functional compounds based on this space, the model MDAGS can generate novel compounds with desirable antibacterial activity without the need for extensive expensive and time-consuming evaluations. Compared with existing antibiotics, candidate antibacterial compounds generated by MDAGS always possessed significantly better antibacterial activity and ensured high similarity. Furthermore, although without explicit constraints on similarity to known antibiotics, these candidate antibacterial compounds all exhibited the highest structural similarity to antibiotics of expected function in the DrugBank database query. Overall, our approach provides a viable solution to the problem of bacterial drug resistance. Availability and implementation Code of the model and datasets can be downloaded from GitHub (https://github.com/LiangYu-Xidian/MDAGS). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3