Continual knowledge infusion into pre-trained biomedical language models

Author:

Jha Kishlay1ORCID,Zhang Aidong1

Affiliation:

1. Department of Computer Science, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Abstract Motivation Biomedical language models produce meaningful concept representations that are useful for a variety of biomedical natural language processing (bioNLP) applications such as named entity recognition, relationship extraction and question answering. Recent research trends have shown that the contextualized language models (e.g. BioBERT, BioELMo) possess tremendous representational power and are able to achieve impressive accuracy gains. However, these models are still unable to learn high-quality representations for concepts with low context information (i.e. rare words). Infusing the complementary information from knowledge-bases (KBs) is likely to be helpful when the corpus-specific information is insufficient to learn robust representations. Moreover, as the biomedical domain contains numerous KBs, it is imperative to develop approaches that can integrate the KBs in a continual fashion. Results We propose a new representation learning approach that progressively fuses the semantic information from multiple KBs into the pretrained biomedical language models. Since most of the KBs in the biomedical domain are expressed as parent-child hierarchies, we choose to model the hierarchical KBs and propose a new knowledge modeling strategy that encodes their topological properties at a granular level. Moreover, the proposed continual learning technique efficiently updates the concepts representations to accommodate the new knowledge while preserving the memory efficiency of contextualized language models. Altogether, the proposed approach generates knowledge-powered embeddings with high fidelity and learning efficiency. Extensive experiments conducted on bioNLP tasks validate the efficacy of the proposed approach and demonstrates its capability in generating robust concept representations.

Funder

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMCN: Chinese medical concept normalization using continual learning and knowledge-enhanced;Artificial Intelligence in Medicine;2024-11

2. Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery;2024 IEEE 12th International Conference on Healthcare Informatics (ICHI);2024-06-03

3. Faithful AI in Medicine: A Systematic Review with Large Language Models and Beyond;2023-12-04

4. Continually-Adaptive Representation Learning Framework for Time-Sensitive Healthcare Applications;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

5. Pre-trained Language Models in Biomedical Domain: A Systematic Survey;ACM Computing Surveys;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3