Regional analysis to delineate intrasample heterogeneity with RegionalST

Author:

Lyu Yue12ORCID,Wu Chong1ORCID,Sun Wei345ORCID,Li Ziyi1ORCID

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center , Houston, TX 77030, United States

2. Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston , Houston, TX 77030, United States

3. Biostatistics Program, Public Health Science Division, Fred Hutchinson Cancer Center , Seattle, WA 98109, United States

4. Department of Biostatistics, University of North Carolina at Chapel Hill , Chapel Hill, NC 27516, United States

5. Department of Biostatistics, University of Washington , Seattle, WA 98195, United States

Abstract

Abstract Motivation Spatial transcriptomics has greatly contributed to our understanding of spatial and intra-sample heterogeneity, which could be crucial for deciphering the molecular basis of human diseases. Intra-tumor heterogeneity, e.g. may be associated with cancer treatment responses. However, the lack of computational tools for exploiting cross-regional information and the limited spatial resolution of current technologies present major obstacles to elucidating tissue heterogeneity. Results To address these challenges, we introduce RegionalST, an efficient computational method that enables users to quantify cell type mixture and interactions, identify sub-regions of interest, and perform cross-region cell type-specific differential analysis for the first time. Our simulations and real data applications demonstrate that RegionalST is an efficient tool for visualizing and analyzing diverse spatial transcriptomics data, thereby enabling accurate and flexible exploration of tissue heterogeneity. Overall, RegionalST provides a one-stop destination for researchers seeking to delve deeper into the intricacies of spatial transcriptomics data. Availability and implementation The implementation of our method is available as an open-source R/Bioconductor package with a user-friendly manual available at https://bioconductor.org/packages/release/bioc/html/RegionalST.html.

Funder

National Institute of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3