Finding the direct optimal RNA barrier energy and improving pathways with an arbitrary energy model

Author:

Takizawa Hiroki1,Iwakiri Junichi1,Terai Goro1,Asai Kiyoshi12

Affiliation:

1. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Chiba 277-8561 Japan

2. Artificial Intelligence Research Center (AIRC), National Institute of Advanced Science and Technology (AIST), Tokyo135-0064, Japan

Abstract

Abstract Motivation RNA folding kinetics plays an important role in the biological functions of RNA molecules. An important goal in the investigation of the kinetic behavior of RNAs is to find the folding pathway with the lowest energy barrier. For this purpose, most of the existing methods use heuristics because the number of possible pathways is huge even if only the shortest (direct) folding pathways are considered. Results In this study, we propose a new method using a best-first search strategy to efficiently compute the exact solution of the minimum barrier energy of direct pathways. Using our method, we can find the exact direct pathways within a Hamming distance of 20, whereas the previous methods even miss the exact short pathways. Moreover, our method can be used to improve the pathways found by existing methods for exploring indirect pathways. Availability and implementation The source code and datasets created and used in this research are available at https://github.com/eukaryo/czno. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

MEXT

JSPS

KAKENHI

JST CREST

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vertex Ordering with Precedence Constraints;Fundamentals of Computation Theory;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3