Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit

Author:

Neumann Jacob1,Lin Yen Ting2ORCID,Mallela Abhishek3ORCID,Miller Ely F1,Colvin Joshua1,Duprat Abell T1,Chen Ye4,Hlavacek William S5ORCID,Posner Richard G1

Affiliation:

1. Department of Biological Sciences, Northern Arizona University , Flagstaff, AZ 86011, USA

2. Information Sciences Group, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory , Los Alamos, NM 87545, USA

3. Department of Mathematics, University of California , Davis, CA 95616, USA

4. Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA

5. Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory , Los Alamos, NM 87545, USA

Abstract

Abstract Summary Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. Availability and implementation PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIH

NIGMS

LDRD

Los Alamos National Laboratory

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference18 articles.

1. An introduction to MCMC for machine learning;Andrieu;Mach. Learn,2003

2. A tutorial on adaptive MCMC;Andrieu;Stat. Comput,2008

3. Tellurium: an extensible python-based modeling environment for systems and synthetic biology;Choi;Biosystems,2018

4. Properties of cell death models calibrated and compared using Bayesian approaches;Eydgahi;Mol. Syst. Biol,2013

5. Rule-based modeling of biochemical systems with BioNetGen;Faeder;Methods Mol. Biol,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3