Affiliation:
1. The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
2. School of Science, Shaoyang University, Shaoyang 422000, China
Abstract
Abstract
Motivation
Emerging evidence presents that traditional drug discovery experiment is time-consuming and high costs. Computational drug repositioning plays a critical role in saving time and resources for drug research and discovery. Therefore, developing more accurate and efficient approaches is imperative. Heterogeneous graph inference is a classical method in computational drug repositioning, which not only has high convergence precision, but also has fast convergence speed. However, the method has not fully considered the sparsity of heterogeneous association network. In addition, rough similarity measure can reduce the performance in identifying drug-associated indications.
Results
In this article, we propose a heterogeneous graph inference with matrix completion (HGIMC) method to predict potential indications for approved and novel drugs. First, we use a bounded matrix completion (BMC) model to prefill a part of the missing entries in original drug–disease association matrix. This step can add more positive and formative drug–disease edges between drug network and disease network. Second, Gaussian radial basis function (GRB) is employed to improve the drug and disease similarities since the performance of heterogeneous graph inference more relies on similarity measures. Next, based on the updated drug–disease associations and new similarity measures of drug and disease, we construct a novel heterogeneous drug–disease network. Finally, HGIMC utilizes the heterogeneous network to infer the scores of unknown association pairs, and then recommend the promising indications for drugs. To evaluate the performance of our method, HGIMC is compared with five state-of-the-art approaches of drug repositioning in the 10-fold cross-validation and de novo tests. As the numerical results shown, HGIMC not only achieves a better prediction performance but also has an excellent computation efficiency. In addition, cases studies also confirm the effectiveness of our method in practical application.
Availabilityand implementation
The HGIMC software and data are freely available at https://github.com/BioinformaticsCSU/HGIMC, https://hub.docker.com/repository/docker/yangmy84/hgimc and http://doi.org/10.5281/zenodo.4285640.
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
National Natural Science Foundation of China
Graduate Research Innovation Project of Hunan
Hunan Provincial Science and technology Program
111Project
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献