Heterogeneous graph inference with matrix completion for computational drug repositioning

Author:

Yang Mengyun12,Huang Lan1,Xu Yunpei1,Lu Chengqian1ORCID,Wang Jianxin1ORCID

Affiliation:

1. The Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. School of Science, Shaoyang University, Shaoyang 422000, China

Abstract

Abstract Motivation Emerging evidence presents that traditional drug discovery experiment is time-consuming and high costs. Computational drug repositioning plays a critical role in saving time and resources for drug research and discovery. Therefore, developing more accurate and efficient approaches is imperative. Heterogeneous graph inference is a classical method in computational drug repositioning, which not only has high convergence precision, but also has fast convergence speed. However, the method has not fully considered the sparsity of heterogeneous association network. In addition, rough similarity measure can reduce the performance in identifying drug-associated indications. Results In this article, we propose a heterogeneous graph inference with matrix completion (HGIMC) method to predict potential indications for approved and novel drugs. First, we use a bounded matrix completion (BMC) model to prefill a part of the missing entries in original drug–disease association matrix. This step can add more positive and formative drug–disease edges between drug network and disease network. Second, Gaussian radial basis function (GRB) is employed to improve the drug and disease similarities since the performance of heterogeneous graph inference more relies on similarity measures. Next, based on the updated drug–disease associations and new similarity measures of drug and disease, we construct a novel heterogeneous drug–disease network. Finally, HGIMC utilizes the heterogeneous network to infer the scores of unknown association pairs, and then recommend the promising indications for drugs. To evaluate the performance of our method, HGIMC is compared with five state-of-the-art approaches of drug repositioning in the 10-fold cross-validation and de novo tests. As the numerical results shown, HGIMC not only achieves a better prediction performance but also has an excellent computation efficiency. In addition, cases studies also confirm the effectiveness of our method in practical application. Availabilityand implementation The HGIMC software and data are freely available at https://github.com/BioinformaticsCSU/HGIMC, https://hub.docker.com/repository/docker/yangmy84/hgimc and http://doi.org/10.5281/zenodo.4285640. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Graduate Research Innovation Project of Hunan

Hunan Provincial Science and technology Program

111Project

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3