Deep graph representations embed network information for robust disease marker identification

Author:

Maddouri Omar1ORCID,Qian Xiaoning12,Yoon Byung-Jun12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

2. Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Abstract Motivation Accurate disease diagnosis and prognosis based on omics data rely on the effective identification of robust prognostic and diagnostic markers that reflect the states of the biological processes underlying the disease pathogenesis and progression. In this article, we present GCNCC, a Graph Convolutional Network-based approach for Clustering and Classification, that can identify highly effective and robust network-based disease markers. Based on a geometric deep learning framework, GCNCC learns deep network representations by integrating gene expression data with protein interaction data to identify highly reproducible markers with consistently accurate prediction performance across independent datasets possibly from different platforms. GCNCC identifies these markers by clustering the nodes in the protein interaction network based on latent similarity measures learned by the deep architecture of a graph convolutional network, followed by a supervised feature selection procedure that extracts clusters that are highly predictive of the disease state. Results By benchmarking GCNCC based on independent datasets from different diseases (psychiatric disorder and cancer) and different platforms (microarray and RNA-seq), we show that GCNCC outperforms other state-of-the-art methods in terms of accuracy and reproducibility. Availability and implementation https://github.com/omarmaddouri/GCNCC. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference42 articles.

1. Tissue classification with gene expression profiles;Ben-Dor;J. Comput. Biol,2000

2. Editorial: comorbidity and autism spectrum disorder;Casanova;Front. Psychiatry,2020

3. Network biology approach to complex diseases;Cho;PLoS Comput. Biol,2012

4. Network-based classification of breast cancer metastasis;Chuang;Mol. Syst. Biol,2007

5. Convolutional neural networks on graphs with fast localized spectral filtering;Defferrard;Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS'16),,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3