UNRES-GPU for physics-based coarse-grained simulations of protein systems at biological time- and size-scales

Author:

Ocetkiewicz Krzysztof M1ORCID,Czaplewski Cezary12ORCID,Krawczyk Henryk13ORCID,Lipska Agnieszka G1ORCID,Liwo Adam12ORCID,Proficz Jerzy1ORCID,Sieradzan Adam K12ORCID,Czarnul Paweł3ORCID

Affiliation:

1. Centre of Informatics Tricity Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk , Gdańsk 80-233, Poland

2. Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk , Gdańsk 80-309, Poland

3. Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk , Gdańsk 80-233, Poland

Abstract

Abstract Summary The UNited RESisdue (UNRES) package for coarse-grained simulations, which has recently been optimized to treat large protein systems, has been implemented on Graphical Processor Units (GPUs). An over 100-time speed-up of the GPU code (run on an NVIDIA A100) with respect to the sequential code and an 8.5 speed-up with respect to the parallel Open Multi-Processing (OpenMP) code (run on 32 cores of 2 AMD EPYC 7313 Central Processor Units (CPUs)) has been achieved for large proteins (with size over 10 000 residues). Due to the averaging over the fine-grain degrees of freedom, 1 time unit of UNRES simulations is equivalent to about 1000 time units of laboratory time; therefore, millisecond time scale of large protein systems can be reached with the UNRES-GPU code. Availability and implementation The source code of UNRES-GPU along with the benchmarks used for tests is available at https://projects.task.gda.pl/eurohpcpl-public/unres.

Funder

National Science Centre

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3