KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality

Author:

Zhang Ke123,Wu Min4,Liu Yong5,Feng Yimiao16,Zheng Jie17ORCID

Affiliation:

1. School of Information Science and Technology, ShanghaiTech University , Shanghai 201210, China

2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050, China

3. University of Chinese Academy of Sciences , Beijing 100049, China

4. Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR) , Singapore 138632, Singapore

5. Nanyang Technological University , Singapore 639798, Singapore

6. Lingang Laboratory , Shanghai 201602, China

7. Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University , Shanghai 201210, China

Abstract

Abstract Motivation Synthetic lethality (SL) is a promising strategy for anticancer therapy, as inhibiting SL partners of genes with cancer-specific mutations can selectively kill the cancer cells without harming the normal cells. Wet-lab techniques for SL screening have issues like high cost and off-target effects. Computational methods can help address these issues. Previous machine learning methods leverage known SL pairs, and the use of knowledge graphs (KGs) can significantly enhance the prediction performance. However, the subgraph structures of KG have not been fully explored. Besides, most machine learning methods lack interpretability, which is an obstacle for wide applications of machine learning to SL identification. Results We present a model named KR4SL to predict SL partners for a given primary gene. It captures the structural semantics of a KG by efficiently constructing and learning from relational digraphs in the KG. To encode the semantic information of the relational digraphs, we fuse textual semantics of entities into propagated messages and enhance the sequential semantics of paths using a recurrent neural network. Moreover, we design an attentive aggregator to identify critical subgraph structures that contribute the most to the SL prediction as explanations. Extensive experiments under different settings show that KR4SL significantly outperforms all the baselines. The explanatory subgraphs for the predicted gene pairs can unveil prediction process and mechanisms underlying synthetic lethality. The improved predictive power and interpretability indicate that deep learning is practically useful for SL-based cancer drug target discovery. Availability and implementation The source code is freely available at https://github.com/JieZheng-ShanghaiTech/KR4SL.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3