Improved inference of tandem domain duplications

Author:

Aluru Chaitanya1,Singh Mona1

Affiliation:

1. Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA

Abstract

Abstract Motivation Protein domain duplications are a major contributor to the functional diversification of protein families. These duplications can occur one at a time through single domain duplications, or as tandem duplications where several consecutive domains are duplicated together as part of a single evolutionary event. Existing methods for inferring domain-level evolutionary events are based on reconciling domain trees with gene trees. While some formulations consider multiple domain duplications, they do not explicitly model tandem duplications; this leads to inaccurate inference of which domains duplicated together over the course of evolution. Results Here, we introduce a reconciliation-based framework that considers the relative positions of domains within extant sequences. We use this information to uncover tandem domain duplications within the evolutionary history of these genes. We devise an integer linear programming approach that solves our problem exactly, and a heuristic approach that works well in practice. We perform extensive simulation studies to demonstrate that our approaches can accurately uncover single and tandem domain duplications, and additionally test our approach on a well-studied orthogroup where lineage-specific domain expansions exhibit varying and complex domain duplication patterns. Availability and implementation Code is available on github at https://github.com/Singh-Lab/TandemDuplications. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institute of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3