Ensembling graph attention networks for human microbe–drug association prediction

Author:

Long Yahui12,Wu Min3ORCID,Liu Yong4,Kwoh Chee Keong2,Luo Jiawei1,Li Xiaoli3

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China

2. School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore

3. Machine Intellection Department, Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 138632, Singapore

4. Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, Singapore, 639798, Singapore

Abstract

Abstract Motivation Human microbes get closely involved in an extensive variety of complex human diseases and become new drug targets. In silico methods for identifying potential microbe–drug associations provide an effective complement to conventional experimental methods, which can not only benefit screening candidate compounds for drug development but also facilitate novel knowledge discovery for understanding microbe–drug interaction mechanisms. On the other hand, the recent increased availability of accumulated biomedical data for microbes and drugs provides a great opportunity for a machine learning approach to predict microbe–drug associations. We are thus highly motivated to integrate these data sources to improve prediction accuracy. In addition, it is extremely challenging to predict interactions for new drugs or new microbes, which have no existing microbe–drug associations. Results In this work, we leverage various sources of biomedical information and construct multiple networks (graphs) for microbes and drugs. Then, we develop a novel ensemble framework of graph attention networks with a hierarchical attention mechanism for microbe–drug association prediction from the constructed multiple microbe–drug graphs, denoted as EGATMDA. In particular, for each input graph, we design a graph convolutional network with node-level attention to learn embeddings for nodes (i.e. microbes and drugs). To effectively aggregate node embeddings from multiple input graphs, we implement graph-level attention to learn the importance of different input graphs. Experimental results under different cross-validation settings (e.g. the setting for predicting associations for new drugs) showed that our proposed method outperformed seven state-of-the-art methods. Case studies on predicted microbe–drug associations further demonstrated the effectiveness of our proposed EGATMDA method. Availability Source codes and supplementary materials are available at: https://github.com/longyahui/EGATMDA/ Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

Chinese Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3