A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug–side effects

Author:

Wang Lin1ORCID,Sun Chenhao1,Xu Xianyu1,Li Jia1,Zhang Wenjuan2

Affiliation:

1. College of Artificial Intelligence, Tianjin University of Science and Technology , No. 9, 13th Street, Tianjin Economic-Technological Development Area , Tianjin 300457, China

2. College of General Education, Tianjin Foreign Studies University , No. 117, Machang Road, Hexi District , Tianjin 300204, China

Abstract

Abstract Motivation A critical issue in drug benefit-risk assessment is to determine the frequency of side effects, which is performed by randomized controlled trails. Computationally predicted frequencies of drug side effects can be used to effectively guide the randomized controlled trails. However, it is more challenging to predict drug side effect frequencies, and thus only a few studies cope with this problem. Results In this work, we propose a neighborhood-regularization method (NRFSE) that leverages multiview data on drugs and side effects to predict the frequency of side effects. First, we adopt a class-weighted non-negative matrix factorization to decompose the drug–side effect frequency matrix, in which Gaussian likelihood is used to model unknown drug–side effect pairs. Second, we design a multiview neighborhood regularization to integrate three drug attributes and two side effect attributes, respectively, which makes most similar drugs and most similar side effects have similar latent signatures. The regularization can adaptively determine the weights of different attributes. We conduct extensive experiments on one benchmark dataset, and NRFSE improves the prediction performance compared with five state-of-the-art approaches. Independent test set of post-marketing side effects further validate the effectiveness of NRFSE. Availability and implementation Source code and datasets are available at https://github.com/linwang1982/NRFSE or https://codeocean.com/capsule/4741497/tree/v1.

Funder

Scientific Research Program of Tianjin Education Commission

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3