ICAT: a novel algorithm to robustly identify cell states following perturbations in single-cell transcriptomes

Author:

Hawkins Dakota Y12,Zuch Daniel T23,Huth James2,Rodriguez-Sastre Nahomie2,McCutcheon Kelley R2,Glick Abigail23,Lion Alexandra T23,Thomas Christopher F2,Descoteaux Abigail E234,Johnson William Evan15ORCID,Bradham Cynthia A1234ORCID

Affiliation:

1. Bioinformatics Program, Boston University , 24 Cummington Mall , Boston, MA 02215, United States

2. Biology Department, Boston University , 24 Cummington Mall , Boston, MA 02215, United States

3. Program in Molecular and Cellular Biology and Biochemistry, Boston University , 24 Cummington Mall , Boston, MA 02215, United States

4. Biological Design Center, Boston University , 610 Commonwealth Ave , Boston, MA 02215, United States

5. Division of Computational Biomedicine, Boston University School of Medicine , 715 Albany St. , Boston, MA 02118, United States

Abstract

Abstract Motivation The detection of distinct cellular identities is central to the analysis of single-cell RNA sequencing (scRNA-seq) experiments. However, in perturbation experiments, current methods typically fail to correctly match cell states between conditions or erroneously remove population substructure. Here, we present the novel, unsupervised algorithm Identify Cell states Across Treatments (ICAT) that employs self-supervised feature weighting and control-guided clustering to accurately resolve cell states across heterogeneous conditions. Results Using simulated and real datasets, we show ICAT is superior in identifying and resolving cell states compared with current integration workflows. While requiring no a priori knowledge of extant cell states or discriminatory marker genes, ICAT is robust to low signal strength, high perturbation severity, and disparate cell type proportions. We empirically validate ICAT in a developmental model and find that only ICAT identifies a perturbation-unique cellular response. Taken together, our results demonstrate that ICAT offers a significant improvement in defining cellular responses to perturbation in scRNA-seq data. Availability and implementation https://github.com/BradhamLab/icat.

Funder

National Science Foundation Integrative Organismal Systems

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3