Digitally predicting protein localization and manipulating protein activity in fluorescence images using 4D reslicing GAN

Author:

Jiao Yang1ORCID,Gu Lingkun2ORCID,Jiang Yingtao1ORCID,Weng Mo2,Yang Mei1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Nevada , Las Vegas, NV 89154, USA

2. School of Life Sciences, University of Nevada , Las Vegas, NV 89154, USA

Abstract

Abstract Motivation While multi-channel fluorescence microscopy is a vital imaging method in biological studies, the number of channels that can be imaged simultaneously is limited by technical and hardware limitations such as emission spectra cross-talk. One solution is using deep neural networks to model the localization relationship between two proteins so that the localization of one protein can be digitally predicted. Furthermore, the input and predicted localization implicitly reflect the modeled relationship. Accordingly, observing the response of the prediction via manipulating input localization could provide an informative way to analyze the modeled relationships between the input and the predicted proteins. Results We propose a protein localization prediction (PLP) method using a cGAN named 4D Reslicing Generative Adversarial Network (4DR-GAN) to digitally generate additional channels. 4DR-GAN models the joint probability distribution of input and output proteins by simultaneously incorporating the protein localization signals in four dimensions including space and time. Because protein localization often correlates with protein activation state, based on accurate PLP, we further propose two novel tools: digital activation (DA) and digital inactivation (DI) to digitally activate and inactivate a protein, in order to observing the response of the predicted protein localization. Compared with genetic approaches, these tools allow precise spatial and temporal control. A comprehensive experiment on six pairs of proteins shows that 4DR-GAN achieves higher-quality PLP than Pix2Pix, and the DA and DI responses are consistent with the known protein functions. The proposed PLP method helps simultaneously visualize additional proteins, and the developed DA and DI tools provide guidance to study localization-based protein functions. Availability and implementation The open-source code is available at https://github.com/YangJiaoUSA/4DR-GAN. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

UNLV TTGRA

NIH

Pathway to Independence Award

UNLV University Libraries Open Article Fund

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3