ZEAL: protein structure alignment based on shape similarity

Author:

Ljung Filip1ORCID,André Ingemar1

Affiliation:

1. Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund SE-22100, Sweden

Abstract

Abstract Motivation Most protein-structure superimposition tools consider only Cartesian coordinates. Yet, much of biology happens on the surface of proteins, which is why proteins with shared ancestry and similar function often have comparable surface shapes. Superposition of proteins based on surface shape can enable comparison of highly divergent proteins, identify convergent evolution and enable detailed comparison of surface features and binding sites. Results We present ZEAL, an interactive tool to superpose global and local protein structures based on their shape resemblance using 3D (Zernike-Canterakis) functions to represent the molecular surface. In a benchmark study of structures with the same fold, we show that ZEAL outperforms two other methods for shape-based superposition. In addition, alignments from ZEAL were of comparable quality to the coordinate-based superpositions provided by TM-align. For comparisons of proteins with limited sequence and backbone-fold similarity, where coordinate-based methods typically fail, ZEAL can often find alignments with substantial surface-shape correspondence. In combination with shape-based matching, ZEAL can be used as a general tool to study relationships between shape and protein function. We identify several categories of protein functions where global shape similarity is significantly more likely than expected by random chance, when comparing proteins with little similarity on the fold level. In particular, we find that global surface shape similarity is particular common among DNA binding proteins. Availability and implementation ZEAL can be used online at https://andrelab.org/zeal or as a standalone program with command line or graphical user interface. Source files and installers are available at https://github.com/Andre-lab/ZEAL. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

European Research Council

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference41 articles.

1. Basic local alignment search tool;Altschul;J. Mol. Biol,1990

2. MolLoc: a web tool for the local structural alignment of molecular surfaces;Angaran;Nucleic Acids Res,2009

3. Precipitate shape fitting and reconstruction by means of 3D Zernike functions;Callahan;Modell. Simul. Mater. Sci. Eng,2012

4. 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition;Canterakis,1999

5. Real-time ligand binding pocket database search using local surface descriptors;Chikhi;Proteins Struct. Funct. Bioinf,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3