Identify connectome between genotypes and brain network phenotypes via deep self-reconstruction sparse canonical correlation analysis

Author:

Wang Meiling12ORCID,Shao Wei12ORCID,Hao Xiaoke3,Huang Shuo12,Zhang Daoqiang12

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China

2. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence , Nanjing 211106, China

3. School of Artificial Intelligence, Hebei University of Technology , Tianjin 300401, China

Abstract

Abstract Motivation As a rising research topic, brain imaging genetics aims to investigate the potential genetic architecture of both brain structure and function. It should be noted that in the brain, not all variations are deservedly caused by genetic effect, and it is generally unknown which imaging phenotypes are promising for genetic analysis. Results In this work, genetic variants (i.e. the single nucleotide polymorphism, SNP) can be correlated with brain networks (i.e. quantitative trait, QT), so that the connectome (including the brain regions and connectivity features) of functional brain networks from the functional magnetic resonance imaging data is identified. Specifically, a connection matrix is firstly constructed, whose upper triangle elements are selected to be connectivity features. Then, the PageRank algorithm is exploited for estimating the importance of different brain regions as the brain region features. Finally, a deep self-reconstruction sparse canonical correlation analysis (DS-SCCA) method is developed for the identification of genetic associations with functional connectivity phenotypic markers. This approach is a regularized, deep extension, scalable multi-SNP-multi-QT method, which is well-suited for applying imaging genetic association analysis to the Alzheimer’s Disease Neuroimaging Initiative datasets. It is further optimized by adopting a parametric approach, augmented Lagrange and stochastic gradient descent. Extensive experiments are provided to validate that the DS-SCCA approach realizes strong associations and discovers functional connectivity and brain region phenotypic biomarkers to guide disease interpretation. Availability and implementation The Matlab code is available at https://github.com/meimeiling/DS-SCCA/tree/main. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3