Multimodal representation learning for predicting molecule–disease relations

Author:

Wen Jun12ORCID,Zhang Xiang1,Rush Everett3,Panickan Vidul A12,Li Xingyu1,Cai Tianrun24,Zhou Doudou5,Ho Yuk-Lam2,Costa Lauren2,Begoli Edmon3,Hong Chuan26,Gaziano J Michael127,Cho Kelly127ORCID,Lu Junwei28,Liao Katherine P128,Zitnik Marinka1910ORCID,Cai Tianxi124ORCID

Affiliation:

1. Department of Biomedical Informatics, Harvard Medical School , Boston, MA 02115, USA

2. VA Boston Healthcare System , Boston, MA 02130, USA

3. Department of Energy, Oak Ridge National Laboratory , Oak Ridge, TN 37831, USA

4. Mass General Brigham , Boston, MA 02130, USA

5. Department of Statistics, University of California , Davis, CA 95616, USA

6. Department of Biostatistics and Bioinformatics, Duke University , Durham, NC 27708, USA

7. Brigham and Women’s Hospital , Boston, MA 02115, USA

8. Department of Biostatistics, Harvard T.H. Chan School of Public Health , Boston, MA 02115, USA

9. Broad Institute of MIT and Harvard , Cambridge, MA 02142, USA

10. Harvard Data Science Initiative , Cambridge, MA 02138, USA

Abstract

AbstractMotivationPredicting molecule–disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule–molecule, molecule–disease and disease–disease semantic dependencies can potentially improve prediction performance.MethodsWe introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule–disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.ResultsWe extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.Availability and implementationThe code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

United States Government

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3