vaRHC: an R package for semi-automation of variant classification in hereditary cancer genes according to ACMG/AMP and gene-specific ClinGen guidelines

Author:

Munté Elisabet1ORCID,Feliubadaló Lidia12ORCID,Pineda Marta12,Tornero Eva1,Gonzalez Maribel1,Moreno-Cabrera José Marcos1ORCID,Roca Carla1,Bales Rubio Joan3,Arnaldo Laura1,Capellá Gabriel12,Mosquera Jose Luis4ORCID,Lázaro Conxi12

Affiliation:

1. Hereditary Cancer Program, Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Catalan Institute of Oncology , L’Hospitalet de Llobregat 08908, Spain

2. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain

3. Department of Information Technologies, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) , L’Hospitalet de Llobregat 08908, Spain

4. Department of Bioinformatics, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) , L’Hospitalet de Llobregat 08908, Spain

Abstract

AbstractMotivationGermline variant classification allows accurate genetic diagnosis and risk assessment. However, it is a tedious iterative process integrating information from several sources and types of evidence. It should follow gene-specific (if available) or general updated international guidelines. Thus, it is the main burden of the incorporation of next-generation sequencing into the clinical setting.ResultsWe created the vaRiants in HC (vaRHC) R package to assist the process of variant classification in hereditary cancer by: (i) collecting information from diverse databases; (ii) assigning or denying different types of evidence according to updated American College of Molecular Genetics and Genomics/Association of Molecular Pathologist gene-specific criteria for ATM, CDH1, CHEK2, MLH1, MSH2, MSH6, PMS2, PTEN, and TP53 and general criteria for other genes; (iii) providing an automated classification of variants using a Bayesian metastructure and considering CanVIG-UK recommendations; and (iv) optionally printing the output to an .xlsx file. A validation using 659 classified variants demonstrated the robustness of vaRHC, presenting a better criteria assignment than Cancer SIGVAR, an available similar tool.Availability and implementationThe source code can be consulted in the GitHub repository (https://github.com/emunte/vaRHC) Additionally, it will be submitted to CRAN soon.

Funder

Carlos III National Health Institute

Ministerio de Ciencia e Innovación

FEDER

CIBERONC

Government of Catalonia

Departament de Salut de la Generalitat de Catalunya

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3