Evaluating individual genome similarity with a topic model

Author:

Juan Liran1,Wang Yongtian2ORCID,Jiang Jingyi1,Yang Qi1,Wang Guohua2ORCID,Wang Yadong2

Affiliation:

1. School of Life Science and Technology

2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract

Abstract Motivation Evaluating genome similarity among individuals is an essential step in data analysis. Advanced sequencing technology detects more and rarer variants for massive individual genomes, thus enabling individual-level genome similarity evaluation. However, the current methodologies, such as the principal component analysis (PCA), lack the capability to fully leverage rare variants and are also difficult to interpret in terms of population genetics. Results Here, we introduce a probabilistic topic model, latent Dirichlet allocation, to evaluate individual genome similarity. A total of 2535 individuals from the 1000 Genomes Project (KGP) were used to demonstrate our method. Various aspects of variant choice and model parameter selection were studied. We found that relatively rare (0.001<allele frequency < 0.175) and sparse (average interval > 20 000 bp) variants are more efficient for genome similarity evaluation. At least 100 000 such variants are necessary. In our results, the populations show significantly less mixed and more cohesive visualization than the PCA results. The global similarities among the KGP genomes are consistent with known geographical, historical and cultural factors. Availability and implementation The source code and data access are available at: https://github.com/lrjuan/LDA_genome. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Natural Science Foundation of China

Natural Science Foundation of Heilongjiang

the China Postdoctoral Science Foundation

the Heilongjiang Postdoctoral Fund

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling the hCoV-19 Informational Architecture;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3