longmixr: a tool for robust clustering of high-dimensional cross-sectional and longitudinal variables of mixed data types

Author:

Hagenberg Jonas123ORCID,Budde Monika4,Pandeva Teodora356,Kondofersky Ivan3,Schaupp Sabrina K4,Theis Fabian J37,Schulze Thomas G489,Müller Nikola S3,Heilbronner Urs4ORCID,Batra Richa310,Knauer-Arloth Janine13

Affiliation:

1. Max Planck Institute of Psychiatry , 80804 Munich, Germany

2. International Max Planck Research School for Translational Psychiatry , 80804 Munich, Germany

3. Institute of Computational Biology, Helmholtz Zentrum München , 85764 Neuherberg, Germany

4. Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich , 80336 Munich, Germany

5. AI4Science, AMLab, University of Amsterdam , GH 1090 Amsterdam, The Netherlands

6. Swammerdam Institute for Life Sciences, University of Amsterdam , GE 1090 Amsterdam, The Netherlands

7. Department of Mathematics, Technical University of Munich , 85748 Munich, Germany

8. Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University , Syracuse, NY 13210, United States

9. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, MD 21287, United States

10. Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, NY 10021, United States

Abstract

Abstract Summary Accurate clustering of mixed data, encompassing binary, categorical, and continuous variables, is vital for effective patient stratification in clinical questionnaire analysis. To address this need, we present longmixr, a comprehensive R package providing a robust framework for clustering mixed longitudinal data using finite mixture modeling techniques. By incorporating consensus clustering, longmixr ensures reliable and stable clustering results. Moreover, the package includes a detailed vignette that facilitates cluster exploration and visualization. Availability and implementation The R package is freely available at https://cran.r-project.org/package=longmixr with detailed documentation, including a case vignette, at https://cellmapslab.github.io/longmixr/.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3