A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images

Author:

Guo Dan1ORCID,Föll Melanie Christine123,Bemis Kylie Ariel1,Vitek Olga1

Affiliation:

1. Khoury College of Computer Sciences, Northeastern University , Boston, MA 02115, USA

2. Institute for Surgical Pathology, Medical Center – University of Freiburg , Freiburg 79106, Germany

3. Faculty of Medicine, University of Freiburg , Freiburg 79110, Germany

Abstract

AbstractMotivationMass Spectrometry Imaging (MSI) analyzes complex biological samples such as tissues. It simultaneously characterizes the ions present in the tissue in the form of mass spectra, and the spatial distribution of the ions across the tissue in the form of ion images. Unsupervised clustering of ion images facilitates the interpretation in the spectral domain, by identifying groups of ions with similar spatial distributions. Unfortunately, many current methods for clustering ion images ignore the spatial features of the images, and are therefore unable to learn these features for clustering purposes. Alternative methods extract spatial features using deep neural networks pre-trained on natural image tasks; however, this is often inadequate since ion images are substantially noisier than natural images.ResultsWe contribute a deep clustering approach for ion images that accounts for both spatial contextual features and noise. In evaluations on a simulated dataset and on four experimental datasets of different tissue types, the proposed method grouped ions from the same source into a same cluster more frequently than existing methods. We further demonstrated that using ion image clustering as a pre-processing step facilitated the interpretation of a subsequent spatial segmentation as compared to using either all the ions or one ion at a time. As a result, the proposed approach facilitated the interpretability of MSI data in both the spectral domain and the spatial domain.Availabilityand implementationThe data and code are available at https://github.com/DanGuo1223/mzClustering.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

Chan-Zuckerberg

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3