Representing core gene expression activity relationships using the latent structure implicit in Bayesian networks

Author:

Gao Jiahao1ORCID,Gerstein Mark1234ORCID

Affiliation:

1. Program in Computational Biology and Bioinformatics, Yale University , New Haven, CT 06520, United States

2. Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT 06520, United States

3. Department of Statistics and Data Science, Yale University , New Haven, CT 06520, United States

4. Department of Computer Science, Yale University , New Haven, CT 06520, United States

Abstract

Abstract Motivation Many types of networks, such as co-expression or ChIP-seq-based gene-regulatory networks, provide useful information for biomedical studies. However, they are often too full of connections and difficult to interpret, forming “indecipherable hairballs.” Results To address this issue, we propose that a Bayesian network can summarize the core relationships between gene expression activities. This network, which we call the LatentDAG, is substantially simpler than conventional co-expression network and ChIP-seq networks (by two orders of magnitude). It provides clearer clusters, without extraneous cross-cluster connections, and clear separators between modules. Moreover, one can find a number of clear examples showing how it bridges the connection between steps in the transcriptional regulatory network and other networks (e.g. RNA-binding protein). In conjunction with a graph neural network, the LatentDAG works better than other biological networks in a variety of tasks, including prediction of gene conservation and clustering genes. Availability and implementation Code is available at https://github.com/gersteinlab/LatentDAG

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3