Biophysical informatics reveals distinctive phenotypic signatures and functional diversity of single-cell lineages

Author:

Chan Trevor J12ORCID,Zhang Xingjian1ORCID,Mak Michael1ORCID

Affiliation:

1. Department of Bioengineering, Yale University , New Haven, CT 06511, USA

2. Department of Bioengineering, University of Pennsylvania , Philadelphia, PA 19104, USA

Abstract

Abstract Motivation In this work, we present an analytical method for quantifying both single-cell morphologies and cell network topologies of tumor cell populations and use it to predict 3D cell behavior. Results We utilized a supervised deep learning approach to perform instance segmentation on label-free live cell images across a wide range of cell densities. We measured cell shape properties and characterized network topologies for 136 single-cell clones derived from the YUMM1.7 and YUMMER1.7 mouse melanoma cell lines. Using an unsupervised clustering algorithm, we identified six distinct morphological subclasses. We further observed differences in tumor growth and invasion dynamics across subclasses in an in vitro 3D spheroid model. Compared to existing methods for quantifying 2D or 3D phenotype, our analytical method requires less time, needs no specialized equipment and is capable of much higher throughput, making it ideal for applications such as high-throughput drug screening and clinical diagnosis. Availability and implementation https://github.com/trevor-chan/Melanoma_NetworkMorphology. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Institutes of Health National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3