Predicting single-cell cellular responses to perturbations using cycle consistency learning

Author:

Huang Wei1,Liu Hui1ORCID

Affiliation:

1. College of Computer and Information Engineering, Nanjing Tech University , Nanjing, Jiangsu 211816, China

Abstract

Abstract Summary Phenotype-based drug screening emerges as a powerful approach for identifying compounds that actively interact with cells. Transcriptional and proteomic profiling of cell lines and individual cells provide insights into the cellular state alterations that occur at the molecular level in response to external perturbations, such as drugs or genetic manipulations. In this paper, we propose cycleCDR, a novel deep learning framework to predict cellular response to external perturbations. We leverage the autoencoder to map the unperturbed cellular states to a latent space, in which we postulate the effects of drug perturbations on cellular states follow a linear additive model. Next, we introduce the cycle consistency constraints to ensure that unperturbed cellular state subjected to drug perturbation in the latent space would produces the perturbed cellular state through the decoder. Conversely, removal of perturbations from the perturbed cellular states can restore the unperturbed cellular state. The cycle consistency constraints and linear modeling in the latent space enable to learn transferable representations of external perturbations, so that our model can generalize well to unseen drugs during training stage. We validate our model on four different types of datasets, including bulk transcriptional responses, bulk proteomic responses, and single-cell transcriptional responses to drug/gene perturbations. The experimental results demonstrate that our model consistently outperforms existing state-of-the-art methods, indicating our method is highly versatile and applicable to a wide range of scenarios. Availability and implementation The source code is available at: https://github.com/hliulab/cycleCDR.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3