Revisiting drug–protein interaction prediction: a novel global–local perspective

Author:

Zhou Zhecheng1,Liao Qingquan2,Wei Jinhang1,Zhuo Linlin1ORCID,Wu Xiaonan1,Fu Xiangzheng2ORCID,Zou Quan3ORCID

Affiliation:

1. School of Data Science and Artificial Intelligence, Wenzhou University of Technology , Wenzhou 325027, China

2. College of Computer Science and Electronic Engineering, Hunan University , Changsha 410012, China

3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 611730, China

Abstract

Abstract Motivation Accurate inference of potential drug–protein interactions (DPIs) aids in understanding drug mechanisms and developing novel treatments. Existing deep learning models, however, struggle with accurate node representation in DPI prediction, limiting their performance. Results We propose a new computational framework that integrates global and local features of nodes in the drug–protein bipartite graph for efficient DPI inference. Initially, we employ pre-trained models to acquire fundamental knowledge of drugs and proteins and to determine their initial features. Subsequently, the MinHash and HyperLogLog algorithms are utilized to estimate the similarity and set cardinality between drug and protein subgraphs, serving as their local features. Then, an energy-constrained diffusion mechanism is integrated into the transformer architecture, capturing interdependencies between nodes in the drug–protein bipartite graph and extracting their global features. Finally, we fuse the local and global features of nodes and employ multilayer perceptrons to predict the likelihood of potential DPIs. A comprehensive and precise node representation guarantees efficient prediction of unknown DPIs by the model. Various experiments validate the accuracy and reliability of our model, with molecular docking results revealing its capability to identify potential DPIs not present in existing databases. This approach is expected to offer valuable insights for furthering drug repurposing and personalized medicine research. Availability and implementation Our code and data are accessible at: https://github.com/ZZCrazy00/DPI.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3