Benefits of dimension reduction in penalized regression methods for high-dimensional grouped data: a case study in low sample size

Author:

Ajana Soufiane1,Acar Niyazi2,Bretillon Lionel2,Hejblum Boris P34,Jacqmin-Gadda Hélène5,Delcourt Cécile1,Acar Niyazi2,Ajana Soufiane1,Berdeaux Olivier2,Bouton Sylvain6,Bretillon Lionel2,Bron Alain27,Buaud Benjamin8,Cabaret Stéphanie2,Cougnard-Grégoire Audrey1,Creuzot-Garcher Catherine27,Delcourt Cécile1,Delyfer Marie-Noelle19,Féart-Couret Catherine1,Febvret Valérie2,Grégoire Stéphane2,He Zhiguo10,Korobelnik Jean-François19,Martine Lucy2,Merle Bénédicte1,Vaysse Carole8,

Affiliation:

1. Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, University of Bordeaux, F-33000 Bordeaux, France

2. Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France

3. ISPED, Inserm, Bordeaux Population Health Research Center 1219, Inria SISTM, University of Bordeaux, F-33000 Bordeaux, France

4. Vaccine Research Institute (VRI), Hôpital Henri Mondor, Créteil, France

5. Inserm, Bordeaux Population Health Research Center, Team Biostatistics, UMR 1219, University of Bordeaux, F-33000 Bordeaux, France

6. Laboratoires Théa, Clermont-Ferrand, France

7. Department of Ophthalmology, University Hospital, Dijon, France

8. ITERG—Equipe Nutrition Métabolisme & Santé, Bordeaux, France

9. Service d’Ophtalmologie, CHU de Bordeaux, F-33000 Bordeaux, France

10. Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France

Abstract

Abstract Motivation In some prediction analyses, predictors have a natural grouping structure and selecting predictors accounting for this additional information could be more effective for predicting the outcome accurately. Moreover, in a high dimension low sample size framework, obtaining a good predictive model becomes very challenging. The objective of this work was to investigate the benefits of dimension reduction in penalized regression methods, in terms of prediction performance and variable selection consistency, in high dimension low sample size data. Using two real datasets, we compared the performances of lasso, elastic net, group lasso, sparse group lasso, sparse partial least squares (PLS), group PLS and sparse group PLS. Results Considering dimension reduction in penalized regression methods improved the prediction accuracy. The sparse group PLS reached the lowest prediction error while consistently selecting a few predictors from a single group. Availability and implementation R codes for the prediction methods are freely available at https://github.com/SoufianeAjana/Blisar. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Agence Nationale de la Recherche

Conseil Régional Bourgogne, Franche-Comté

FEDER

European Funding for Regional Economical Development

Fondation de France/Fondation de l'œil

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3