A sequential niche multimodal conformational sampling algorithm for protein structure prediction

Author:

Xia Yu-Hao1,Peng Chun-Xiang1,Zhou Xiao-Gen2,Zhang Gui-Jun1ORCID

Affiliation:

1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA

Abstract

Abstract Motivation Massive local minima on the protein energy landscape often cause traditional conformational sampling algorithms to be easily trapped in local basin regions, because they find it difficult to overcome high-energy barriers. Also, the lowest energy conformation may not correspond to the native structure due to the inaccuracy of energy models. This study investigates whether these two problems can be alleviated by a sequential niche technique without loss of accuracy. Results A sequential niche multimodal conformational sampling algorithm for protein structure prediction (SNfold) is proposed in this study. In SNfold, a derating function is designed based on the knowledge learned from the previous sampling and used to construct a series of sampling-guided energy functions. These functions then help the sampling algorithm overcome high-energy barriers and avoid the re-sampling of the explored regions. In inaccurate protein energy models, the high-energy conformation that may correspond to the native structure can be sampled with successively updated sampling-guided energy functions. The proposed SNfold is tested on 300 benchmark proteins, 24 CASP13 and 19 CASP14 FM targets. Results show that SNfold correctly folds (TM-score ≥ 0.5) 231 out of 300 proteins. In particular, compared with Rosetta restrained by distance (Rosetta-dist), SNfold achieves higher average TM-score and improves the sampling efficiency by more than 100 times. On several CASP FM targets, SNfold also shows good performance compared with four state-of-the-art servers in CASP. As a plug-in conformational sampling algorithm, SNfold can be extended to other protein structure prediction methods. Availability and implementation The source code and executable versions are freely available at https://github.com/iobio-zjut/SNfold. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Nature Science Foundation of China

Key Project of Zhejiang Provincial Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference62 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3