Correction of image distortion in large-field ssEM stitching by an unsupervised intermediate-space solving network

Author:

He Bintao12ORCID,Zhang Yan3,Zhang Fa4ORCID,Han Renmin1

Affiliation:

1. Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University , Shandong 266000, China

2. BioMap, Inc. , Beijing 100086, China

3. The Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100190, China

4. High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences , Beijing 100190, China

Abstract

Abstract Motivation Serial-section electron microscopy (ssEM) is a powerful technique for cellular visualization, especially for large-scale specimens. Limited by the field of view, a megapixel image of whole-specimen is regularly captured by stitching several overlapping images. However, suffering from distortion by manual operations, lens distortion or electron impact, simple rigid transformations are not adequate for perfect mosaic generation. Non-linear deformation usually causes ‘ghosting’ phenomenon, especially with high magnification. To date, existing microscope image processing tools provide mature rigid stitching methods but have no idea with local distortion correction. Results In this article, following the development of unsupervised deep learning, we present a multi-scale network to predict the dense deformation fields of image pairs in ssEM and blend these images into a clear and seamless montage. The model is composed of two pyramidal backbones, sharing parameters and interacting with a set of registration modules, in which the pyramidal architecture could effectively capture large deformation according to multi-scale decomposition. A novel ‘intermediate-space solving’ paradigm is adopted in our model to treat inputted images equally and ensure nearly perfect stitching of the overlapping regions. Combining with the existing rigid transformation method, our model further improves the accuracy of sequential image stitching. Extensive experimental results well demonstrate the superiority of our method over the other traditional methods. Availability and implementation The code is available at https://github.com/HeracleBT/ssEM_stitching. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China projects

Chinese Academy of Sciences

National Laboratory of Biomacromolecules of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3