mb-PHENIX: diffusion and supervised uniform manifold approximation for denoizing microbiota data

Author:

Padron-Manrique Cristian12,Vázquez-Jiménez Aarón1,Esquivel-Hernandez Diego Armando1,Martinez Lopez Yoscelina Estrella13,Neri-Rosario Daniel14,Sánchez-Castañeda Jean Paul14,Giron-Villalobos David14,Resendis-Antonio Osbaldo15ORCID

Affiliation:

1. Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN) , Mexico City, 14610, Mexico

2. Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) , Mexico City, 04510, Mexico

3. Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM) , Mexico City, 04510, Mexico

4. Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM) , Mexico City, 04510, Mexico

5. Coordinación de la Investigación Científica—Red de Apoyo a la Investigación—Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM) , Mexico City, 04510, Mexico

Abstract

Abstract Motivation Microbiota data encounters challenges arising from technical noise and the curse of dimensionality, which affect the reliability of scientific findings. Furthermore, abundance matrices exhibit a zero-inflated distribution due to biological and technical influences. Consequently, there is a growing demand for advanced algorithms that can effectively recover missing taxa while also considering the preservation of data structure. Results We present mb-PHENIX, an open-source algorithm developed in Python that recovers taxa abundances from the noisy and sparse microbiota data. Our method infers the missing information of count matrix (in 16S microbiota and shotgun studies) by applying imputation via diffusion with supervised Uniform Manifold Approximation Projection (sUMAP) space as initialization. Our hybrid machine learning approach allows to denoise microbiota data, revealing differential abundance microbes among study groups where traditional abundance analysis fails. Availability and implementation The mb-PHENIX algorithm is available at https://github.com/resendislab/mb-PHENIX. An easy-to-use implementation is available on Google Colab (see GitHub).

Funder

CONAHCyT

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference8 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3