Population-based change-point detection for the identification of homozygosity islands

Author:

Prates Lucas1,Lemes Renan B2,Hünemeier Tábita23ORCID,Leonardi Florencia1ORCID

Affiliation:

1. Institute of Mathematics and Statistics, University of São Paulo , São Paulo, Brazil

2. Institute of Biological Sciences, University of São Paulo , São Paulo, Brazil

3. Institut de Biologia Evolutiva, Universitat Pompeu Fabra , Barcelona, Spain

Abstract

Abstract Motivation This work is motivated by the problem of identifying homozygosity islands on the genome of individuals in a population. Our method directly tackles the issue of identification of the homozygosity islands at the population level, without the need of analysing single individuals and then combine the results, as is made nowadays in state-of-the-art approaches. Results We propose regularized offline change-point methods to detect changes in the parameters of a multidimensional distribution when we have several aligned, independent samples of fixed resolution. We present a penalized maximum likelihood approach that can be efficiently computed by a dynamic programming algorithm or approximated by a fast binary segmentation algorithm. Both estimators are shown to converge almost surely to the set of change-points without the need of specifying a priori the number of change-points. In simulation, we observed similar performances from the exact and greedy estimators. Moreover, we provide a new methodology for the selection of the regularization constant which has the advantage of being automatic, consistent, and less prone to subjective analysis. Availability and implementation The data used in the application are from the Human Genome Diversity Project (HGDP) and is publicly available. Algorithms were implemented using the R software R Core Team (R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing, 2020.) in the R package blockcpd, found at https://github.com/Lucas-Prates/blockcpd.

Funder

São Paulo Research Foundation, Brazil

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The roles of FLOT1 in human diseases (Review);Molecular Medicine Reports;2023-09-22

2. Prognostic and immunological potential of PPM1G in lung adenocarcinoma;Molecular Medicine Reports;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3