Matched Forest: supervised learning for high-dimensional matched case–control studies

Author:

Shomal Zadeh Nooshin1,Lin Sangdi2,Runger George C1

Affiliation:

1. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA

2. Zillow Group, Seattle, WA 98101, USA

Abstract

Abstract Motivation Matched case–control analysis is widely used in biomedical studies to identify exposure variables associated with health conditions. The matching is used to improve the efficiency. Existing variable selection methods for matched case–control studies are challenged in high-dimensional settings where interactions among variables are also important. We describe a quite different method for high-dimensional matched case–control data, based on the potential outcome model, which is not only flexible regarding the number of matching and exposure variables but also able to detect interaction effects. Results We present Matched Forest (MF), an algorithm for variable selection in matched case–control data. The method preserves the case and control values in each instance but transforms the matched case–control data with added counterfactuals. A modified variable importance score from a supervised learner is used to detect important variables. The method is conceptually simple and can be applied with widely available software tools. Simulation studies show the effectiveness of MF in identifying important variables. MF is also applied to data from the biomedical domain and its performance is compared with alternative approaches. Availability and implementation R code for implementing MF is available at https://github.com/NooshinSh/Matched_Forest. Supplementary information Supplementary data are available at Bioinformatics online.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3