Graspot: a graph attention network for spatial transcriptomics data integration with optimal transport

Author:

Gao Zizhan12,Cao Kai3,Wan Lin12

Affiliation:

1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing 100190, China

2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard , Cambridge, MA 02142, United States

Abstract

Abstract Summary Spatial transcriptomics (ST) technologies enable the measurement of mRNA expression while simultaneously capturing spot locations. By integrating ST data, the 3D structure of a tissue can be reconstructed, yielding a comprehensive understanding of the tissue’s intricacies. Nevertheless, a computational challenge persists: how to remove batch effects while preserving genuine biological structure variations across ST data. To address this, we introduce Graspot, a graph attention network designed for spatial transcriptomics data integration with unbalanced optimal transport. Graspot adeptly harnesses both gene expression and spatial information to align common structures across multiple ST datasets. It embeds multiple ST datasets into a unified latent space, facilitating the partial alignment of spots from different slices. Demonstrating superior performance compared to existing methods on four real ST datasets, Graspot excels in ST data integration, including tasks that require partial alignment. In particular, Graspot efficiently integrates multiple ST slices and guides coordinate alignment. In addition, Graspot accurately aligns the spatio-temporal transcriptomics data to reconstruct human heart developmental processes. Availability and implementation Graspot software is available at https://github.com/zhan009/Graspot.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3