Redundancy-weighting the PDB for detailed secondary structure prediction using deep-learning models

Author:

Sidi Tomer1,Keasar Chen1

Affiliation:

1. Department of Computer Science, Ben-Gurion University, P.O.B 653, Be'er Sheva 84105, Israel

Abstract

Abstract Motivation The Protein Data Bank (PDB), the ultimate source for data in structural biology, is inherently imbalanced. To alleviate biases, virtually all structural biology studies use nonredundant (NR) subsets of the PDB, which include only a fraction of the available data. An alternative approach, dubbed redundancy-weighting (RW), down-weights redundant entries rather than discarding them. This approach may be particularly helpful for machine-learning (ML) methods that use the PDB as their source for data. Methods for secondary structure prediction (SSP) have greatly improved over the years with recent studies achieving above 70% accuracy for eight-class (DSSP) prediction. As these methods typically incorporate ML techniques, training on RW datasets might improve accuracy, as well as pave the way toward larger and more informative secondary structure classes. Results This study compares the SSP performances of deep-learning models trained on either RW or NR datasets. We show that training on RW sets consistently results in better prediction of 3- (HCE), 8- (DSSP) and 13-class (STR2) secondary structures. Availability and implementation The ML models, the datasets used for their derivation and testing, and a stand-alone SSP program for DSSP and STR2 predictions, are freely available under LGPL license in http://meshi1.cs.bgu.ac.il/rw. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Israel Science Foundation

ISF

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference39 articles.

1. TensorFlow: large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. The Protein Data Bank, 1999–

3. The Protein Data Bank: a computer-based archival file for macromolecular structures;Bernstein;J. Mol. Biol,1977

4. BLAST+: architecture and applications;Camacho;BMC Bioinformatics,2009

5. Improved residue contact prediction using support vector machines and a large feature set;Cheng;BMC Bioinformatics,2007

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3