Multimodal reasoning based on knowledge graph embedding for specific diseases

Author:

Zhu Chaoyu1ORCID,Yang Zhihao2,Xia Xiaoqiong1,Li Nan2,Zhong Fan1,Liu Lei13ORCID

Affiliation:

1. Institute of Biomedical Sciences and School of Basic Medical Science, Shanghai Medical College, Fudan University , Shanghai 200032, China

2. College of Computer Science and Technology, Dalian University of Technology , Dalian 116024, China

3. Jihua Laboratory, Engineering Research Center for Intelligent Robotics, Guangzhou 510000, China

Abstract

Abstract Motivation Knowledge Graph (KG) is becoming increasingly important in the biomedical field. Deriving new and reliable knowledge from existing knowledge by KG embedding technology is a cutting-edge method. Some add a variety of additional information to aid reasoning, namely multimodal reasoning. However, few works based on the existing biomedical KGs are focused on specific diseases. Results This work develops a construction and multimodal reasoning process of Specific Disease Knowledge Graphs (SDKGs). We construct SDKG-11, a SDKG set including five cancers, six non-cancer diseases, a combined Cancer5 and a combined Diseases11, aiming to discover new reliable knowledge and provide universal pre-trained knowledge for that specific disease field. SDKG-11 is obtained through original triplet extraction, standard entity set construction, entity linking and relation linking. We implement multimodal reasoning by reverse-hyperplane projection for SDKGs based on structure, category and description embeddings. Multimodal reasoning improves pre-existing models on all SDKGs using entity prediction task as the evaluation protocol. We verify the model’s reliability in discovering new knowledge by manually proofreading predicted drug–gene, gene–disease and disease–drug pairs. Using embedding results as initialization parameters for the biomolecular interaction classification, we demonstrate the universality of embedding models. Availability and implementation The constructed SDKG-11 and the implementation by TensorFlow are available from https://github.com/ZhuChaoY/SDKG-11. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Key Area Support Plan of Guangdong Province for Jihua Laboratory

S&T Program of Hebei

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3