Node similarity-based graph convolution for link prediction in biological networks

Author:

Coşkun Mustafa12ORCID,Koyutürk Mehmet34

Affiliation:

1. Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey

2. Hakkari University, Kayseri 38080, Turkey

3. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA

4. Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA

Abstract

ABSTRACT Background Link prediction is an important and well-studied problem in network biology. Recently, graph representation learning methods, including Graph Convolutional Network (GCN)-based node embedding have drawn increasing attention in link prediction. Motivation An important component of GCN-based network embedding is the convolution matrix, which is used to propagate features across the network. Existing algorithms use the degree-normalized adjacency matrix for this purpose, as this matrix is closely related to the graph Laplacian, capturing the spectral properties of the network. In parallel, it has been shown that GCNs with a single layer can generate more robust embeddings by reducing the number of parameters. Laplacian-based convolution is not well suited to single-layered GCNs, as it limits the propagation of information to immediate neighbors of a node. Results Capitalizing on the rich literature on unsupervised link prediction, we propose using node similarity-based convolution matrices in GCNs to compute node embeddings for link prediction. We consider eight representative node-similarity measures (Common Neighbors, Jaccard Index, Adamic-Adar, Resource Allocation, Hub- Depressed Index, Hub-Promoted Index, Sorenson Index and Salton Index) for this purpose. We systematically compare the performance of the resulting algorithms against GCNs that use the degree-normalized adjacency matrix for convolution, as well as other link prediction algorithms. In our experiments, we use three-link prediction tasks involving biomedical networks: drug–disease association prediction, drug–drug interaction prediction and protein–protein interaction prediction. Our results show that node similarity-based convolution matrices significantly improve the link prediction performance of GCN-based embeddings. Conclusion As sophisticated machine-learning frameworks are increasingly employed in biological applications, historically well-established methods can be useful in making a head-start. Availability and implementation Our method, SiGraC, is implemented as a Python library and is freely available at https://github.com/mustafaCoskunAgu/SiGraC.

Funder

US National Institutes of Health

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3