wenda_gpu: fast domain adaptation for genomic data

Author:

Hippen Ariel A1,Crawford Jake1,Gardner Jacob R2,Greene Casey S3ORCID

Affiliation:

1. Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA 19104, USA

2. Department of Computer and Information Science, University of Pennsylvania , Philadelphia, PA 19104, USA

3. Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus , Aurora, CO 80045, USA

Abstract

AbstractMotivationDomain adaptation allows for the development of predictive models even in cases with limited sample data. Weighted elastic net domain adaptation specifically leverages features of genomic data to maximize transferability but the method is too computationally demanding to apply to many genome-sized datasets.ResultsWe developed wenda_gpu, which uses GPyTorch to train models on genomic data within hours on a single GPU-enabled machine. We show that wenda_gpu returns comparable results to the original wenda implementation, and that it can be used for improved prediction of cancer mutation status on small sample sizes than regular elastic net.Availability and implementationwenda_gpu is available on GitHub at https://github.com/greenelab/wenda_gpu/.Supplementary informationSupplementary data are available at Bioinformatics online.

Funder

National Cancer Institute

National Institutes of Health

NIH’s National Human Genome Research Institute

NHGRI

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference6 articles.

1. GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration;Gardner;Adv. Neural Inf. Process. Syst,2018

2. Weighted elastic net for unsupervised domain adaptation with application to age prediction from DNA methylation data;Handl;Bioinformatics,2019

3. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas;Knijnenburg;Cell Rep,2018

4. Cancer gene mutation frequencies for the U.S. population;Mendiratta;Nat. Commun,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3